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Arctic-HYDRA

A New International Effort for the Study of the Arctic Hydrological Cycle 
and its Role in the Global Climate System

The Arctic region of our planet consists of a deep, largely ice-covered ocean surrounded by the land 

masses of Eurasia and North-America. The physical geography of the region encompasses the moun-

tainous regions of Alaska, the ice masses of Greenland and Arctic Canada and the flat plains and 

tundras of Siberia. Population centers include developed parts of Northern Europe and remote, 

sparsely inhabited regions where hunters live off the land. Arctic seas contain rich fishing grounds, 

mineral reserves are exploited in several regions and the rising interest in rich oil and gas reserves is 

attracting international attention.

Records of past climate variations and modelling of future climate provide strong indications that the 

Arctic region is particularly vulnerable to ongoing global warming. Air temperatures have increased 

twice as much in the Arctic as in the rest of the world over the past half century and a warming of 

three times the global average is predicted for the Central Arctic by the end of the 21st century. In 

recent years, declining sea ice cover has attracted the attention of policy makers and the general 

public and scientists continue to debate the future effects of increasing freshwater runoff from Arctic 

land masses on oceanic circulation. In the future, processes involving Arctic marine and terrestrial 

systems can be expected to exert influence far beyond the boundaries of the Arctic region.

Studies of the Arctic Hydrological Cycle form a key component of ongoing scientific research aimed 

at increasing our understanding of the region’s role in Earth’s climate system. The past 20 years have 

seen a decline in observational networks in most regions of the Arctic and no monitoring systems 

exist within large areas that contribute runoff. Modelling efforts aimed at advancing our under-

standing of the causes and impacts of climate changes in the Arctic are still limited by a lack of 

knowledge relating to hydrological characteristics of water basins.

In this context, the national hydrological institutes in all Arctic countries have teamed up with several 

academic departments, the World Meteorological Organization and other international bodies in a 

new consortium that will aim to provide a new, quantitative picture of the state of the pan-Arctic 

Hydrological Cycle at a time when rapid Arctic warming is affecting several domains of the climate 

system. Because water cross-cuts all elements of the Arctic system, the programme will include studies 

of hydrology and meteorology, sea ice and oceanography, glaciers and ice caps, cold land processes, 

ecosystems, changes and variability, environmental impacts and people. Because Arctic freshwater in 

its various states is so deeply embedded into the behavior of the larger Earth system, the domain of 

Arctic-HYDRA will be fully pan-Arctic. Focus will be on defining the state and fluxes of freshwater 

systems and their geographic and temporal variations that characterize the Arctic in the first two dec-

ades of the 21st century.
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10 Issues and Rationale

Figure 1.1 – A view of the pan-Arctic region, showing drainage basins in Eurasia and North America that contribute 

runoff to the Arctic Ocean and surrounding seas. The thickness of blue lines drawn along river courses represents 

relative river discharge. The Arctic Ocean is the most river-influenced and landlocked of all oceans and although it 

contains only 1% of the world’s ocean water, it receives about 10% of world river runoff. 

Source: R.B. Lammers, University of New Hampshire, modified from Forman et al. (2000).

1.1.	The Arctic is a Recipient and Amplifier of Climatic 
and Environmental Change
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The Arctic exerts a special influence over global cli-

mate through feedback mechanisms, by which Arctic 

processes can cause additional climate change for the 

planet. 

The first is through the change in surface reflectivity 

(albedo) that occurs when the area of snow and ice 

surfaces is reduced by melting. An increased amount 

of solar energy is then absorbed by the darker land/

ocean surface, leading to increased melting and thus 

amplifying the warming trend. The northward ex-

pansion of forests into tundras in a warmer climate 

will also lead to a reduction in reflectivity. 

Alteration in oceanic circulation patterns is another 

important feedback mechanism, through which Arc-

tic processes can amplify changes in global climate. 

The sinking of cold, dense seawater (deepwater for-

mation), driving the thermohaline circulation in the 

world´s oceans, primarily occurs in the North Atlantic 

Ocean and in the Labrador sea. Sea ice formation also 

influences this process, by making near-surface water 

saltier and denser as salt is rejected from the ice. In a 

warmer climate, deepwater formation can be reduced 

by an increase in freshwater input through greater 

precipitation and runoff from adjacent continental 

areas, as well as by reduced sea-ice formation. The 

resulting slowdown in the thermohaline circulation 

would slow the transport of carbon dioxide to the 

deep ocean and thereby allow more rapid buildup of 

CO2 in the atmosphere, thus amplifying global warm-

ing. A slower oceanic circulation could lead to re-

gional cooling in areas adjacent to the North Atlantic 

Ocean, at least temporarily, even as warming contin-

ues throughout the rest of the planet.

Finally, climatic warming is expected to influence the 

exchange of greenhouse gases between the atmos-

phere and Arctic soils and sediments. Vast amounts 

of carbon have been accumulated in peat bogs in Si-

beria and parts of North America and summer thaw-

ing of the surface layer of permafrost leads to the re-

lease of methane and carbon dioxide to the atmos-

phere. These releases are thus intimately connected 

to the disposition of water, frozen water, energy and 

carbon. Greater release in a warmer climate may cre-

ate an amplifying feedback loop, whereby more 

warming causes additional releases, leading to more 

warming and so on.

How the Arctic System Can Amplify Global Climate Change

The Importance of the Arctic in the Climate System

The Arctic constitutes a complex system uniting physical, chemical, biological and human social do-

mains. Normally, the Arctic region is defined as the area north of the Arctic Circle (66°33’ N), but is 

sometimes referred to as the region where the average temperature for the warmest month (July) 

is below 10°C. The Arctic and its hydrology play a central role in regulating Earth’s climate. The Arc-

tic Ocean is an unusually fresh part of the world ocean system, owing to large amounts of net con-

vergence of atmospheric moisture from the lower latitudes, as well as discharge by huge rivers in 

Siberia and North America reflecting its place as the most land-dominated of all ocean basins. Sus-

tained influx of freshwater is crucial to maintaining a relatively fresh surface layer, which helps to 

retain the Arctic Ocean’s sea ice cover by insulating the surface layers from deeper warm waters. 

However, pathways and variability of freshwater circulation within the Arctic Ocean are still poorly 

understood, despite concerns regarding surface freshening in the North Atlantic and its influence on 

global thermohaline circulation.

Hydrological processes in the Arctic have a large impact on the water and energy balances at a range 

of spatial scales. Runoff, groundwater, soil moisture, snow cover, glacier mass balance and perma-

frost in this region all influence the natural environment at the local scale through their impacts on 

biological activity and water chemistry. Furthermore, water is a primary weathering agent for rocks 

and soils, breaking them down, dissolving them, and transporting the resulting sediments and dis-

solved solids to the sea. Freshwater discharge and energy fluxes to the Arctic Ocean, latent and 

sensible heat fluxes, glacier mass balance, snow cover and permafrost conditions influence the glo-

bal climate through feedback effects involving atmospheric and ocean circulation. Interactions  
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between different processes in the Arctic, e.g. the extent of snow cover, glaciers and permafrost, 

groundwater discharge and streamflow require that impact studies consider the simultaneous func-

tioning of all parts of the system.

Recent Climate Change in the Arctic

Temperature records, hydrological data, glacier and permafrost observations and data on sea ice ex-

tent and thickness all provide strong evidence for Arctic warming in the past decades. Figure 1.2 

shows the change in temperature in the Arctic region over the 50 year period 1959-2008. A warming 

of 2-3 °C is observed in most of Alaska, in NW Canada and parts of Siberia. On average, annual Arctic 

temperature has increased by almost twice the rate measured for the rest of the world, with some 

variations across the region. Precipitation in the Arctic has, on average, increased by 8% in the past 

century.

Remarkable changes have been observed in the spatial patterns of Arctic temperature anomalies at 

the beginning of the 21st century (2000-2007) as compared with most of the 20th century. The year 

2007 was the warmest on record for the Arctic and some authors suggest calling this recent interval 

the Arctic Warm Period. Figure 1.3 shows satellite-derived summer-mean sea surface temperature 

(SST) anomalies since 2000. Warm anomalies during 2002–2005 are evident north of Alaska, the Ber-

ing Strait and eastern Siberia and temperature anomalies in 2007 are much larger than in any other 

year, reaching a maximum of 5°C in the Chukchi Sea. The summers of 2005 through 2007 all ended 

with extensive areas of open water, leading to absorption of extra heat from solar radiation and 

unusually late ice freeze-up. A strong negative trend in summertime sea-ice extent has been ob-

served over the last 30 years and a record minimum occurred in 2007 (Figure 1.4). This minimum was 

set up by sustained winds blowing from the North Pacific across the North Pole, whereas the near 

record minimum in 2008 occurred in a summer with more variable winds (Figure 1.5). In September 

Figure 1.2 – Arctic temperature changes 1959-2008.   Source: http://arctic.atmos.uiuc.edu/
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Figure 1.3 – Mean satellite-derived summer sea surface temperatures over the Arctic Ocean 1982-2007 (top left), and 

anomalies from this mean in the years 2000-2007. For 2007, extra contours for 3°C and 4°C are provided. Also shown 

is the September-mean ice edge (blue contour) from the Hadley Centre (1982–2006: http://badc.nerc.ac.uk/data/

hadisst/) and from the National Centers for Environmental Prediction (2007: ftp://polar.ncep.noaa.gov/pub/cdas/). 

Source: Steele et al. (2008).

Figure 1.4 – Time series of the difference in sea-ice extent in March (the month of ice extent maximum) and Sep-

tember (the month of ice extent minimum) from the mean values for the time period 1979–2000. Based on a least 

squares linear regression for the period 1979-2009, the rate of decrease for the March and September ice extents 

was –2.5% and –8.9% per decade, respectively. Source: Perovich et al. (2009).
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2009, more ice cover remained at the end of the Arctic summer than in 2007 and 2008, but sea-ice 

extent has not recovered to previous levels and the past five years have seen the five lowest ice ex-

tents in the satellite record. Satellite derived sea-ice thickness estimates indicate that the ice has 

thinned significantly between 1982 and 2007 and helicopter-borne and ice-based electromagnetic 

measurements indicate a reduction of mean sea-ice thicknesses in the region of the North Pole of up 

to 44% between 2001 and 2007.

Widespread changes in the terrestrial cryosphere throughout the Arctic region are well documented. 

Most Arctic glaciers and ice caps have been in decline since the early 1960s, with this trend speeding 

up in the 1990s (Figure 1.6). There is more uncertainty about recent changes in the state of the 

Greenland ice sheet, but recent gravitational observations from space (the GRACE experiment) are 

making it possible to determine the rate of mass loss from the ice sheet with reasonably good  

accuracy. The most recent assessments indicate accelerating mass loss from the ice sheet during the 

Figure 1.5 – Sea ice extent in September 2007 

(top left), March 2008 (top center), September 

2008 (top right), March 2009 (bottom left) 

and September 2009 (bottom center), illus-

trating the winter maximum and summer 

minimum extents. The magenta line indicates 

the median maximum and minimum extent 

of the ice cover, for the period 1979–2000. The 

September 2007 minimum extent marked a 

record minimum for the period 1979–2008. 

[Figures from the US National Snow and Ice 

Data Center Sea Ice Index: nsidc.org/data/ 

seaice_index]. 

Figure 1.6a – The annual mass balance of Sátu-

jökull, a representative transect of the Hofsjökull 

ice cap, Central Iceland, has been negative since 

1995. The ice cap lost approximately 5% of its total 

volume in the period 1995-2008.

Sources: Sigurðsson et al. (2004), Thorsteinsson 

(2009). Data accessible at the World Glacier Moni-

toring Service (http://www.geo.unizh.ch/wgms/).
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Figure 1.7 – Front position of the Ilulissat (Jakobshavn Isbræ) glacier, West Greenland, in 2007 (thick red line) and 

earlier years, based on Weidick and Bennike (2007). The image mosaic is from June 2003 Landsat and ASTER im-

ages. The large ice lagoon Tissarissoq at the south side of the fjord became ice-free at the end of the summer 2007, 

probably for the first time since the Medieval Warm Period.

1990s up to 2008. According to the latest IPCC Assessment report, Greenland was in 1996 losing 

about 96 km³ per year in mass from its ice sheet. In 2005, this had increased to about 220 km³ a year 

due to rapid thinning near the coast, while in 2006 it was estimated at 239 km³ per year. Drastic 

retreat of several major outlet glaciers like the Jakobshavn Isbræ (Figure 1.7) has been documented 

in recent years, but this retreat has unexpectedly been accompanied by a rapid increase in flow ve-

locities of several glaciers and hence increased rates of calving. In SE-Greenland, the higher velocities 

may be related to an increase in ocean temperatures near the coast of Greenland, which reduced 

the sea ice cover and hence the buttressing effect of sea ice on calving glaciers. Another contributing 

factor is increased percolation of surface meltwater which enhances glacier sliding through buildup 

of water pressure at the bed. 

Fig. 1.6b – Changes in the outlines of the 

Hofsjökull ice cap during the period 1946-

2006. 

Prepared by O. Sigurðsson and Bogi B. 

Björnsson, Icelandic Meterological Office, 

2010.
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Figure 1.8 – Changes in mean annual temperature 

projected by the ACIA-designated models for the early 

(top left), middle (top right) and late (bottom left) 21st 

century, as compared to the ACIA baseline (1981-

2000). 

From: ACIA Scientific Report, Cambridge University 

Press, 2005.

Box 1 highlighted how processes in the Arctic may 

increase the rate of global atmospheric warming. 

Climate models predict that temperature rise will be 

more pronounced in the Arctic than elsewhere on the 

planet under increasing greenhouse warming; this is 

commonly referred to as “Arctic amplification”.

In a recent paper, Serreze et al. (2009) provide evi-

dence that surface-based Arctic amplification has 

already been occurring within the last decade. The 

recent surface temperature anomalies (Figure 1.3) 

align with the observed reduction in September sea 

ice extent as predicted. Moreover, the recent autumn 

warming, which also affects the overlying atmos-

phere, is stronger in the Arctic than in lower lati-

tudes. The effects of Arctic amplification on the at-

mospheric circulation are not well understood, but 

the loss of sea ice cover may lead to changes in storm 

tracks and rainfall patterns over Europe or the Amer-

ican West.

ARCTIC AMPLIFICATION ALREADY OBSERVED?

Scenarios for Arctic Warming in the 21st Century

Possible scenarios of 21st century climate change have been obtained through model calculations and 

analyzed in the Arctic Climate Impact Assessment Report (ACIA, 2005). Figure 1.8 shows the pro-

jected worldwide change in annual mean temperature for three 21st century periods: 2011-2030, 

2041-2060 and 2071-2090 (average of 5 ACIA models). On average, the models predict greater tem-

perature changes at high northern latitudes than anywhere else in the world. By 2071-2090, the 

central Arctic will, according to these projections, have warmed by 5°C (about three times the global 

average). Precipitation is projected to increase by between 7.5% and 18% between the periods 

1981-2000 and 2071-2090, as compared with a projected mean global precipitation increase of 2.5% 

(ACIA Report, Chapter 4.4.3).

The ACIA models have also been used to predict hydrological changes in the Arctic during the 21st 

century. For example, earlier break-up and later freeze-up of rivers and lakes is projected. The reduc-

tion in ice cover thickness on lakes and rivers is expected to continue due to atmospheric warming, 

although modifications due to precipitation changes may occur. 

The total Arctic river runoff is projected to increase by 10-20% by 2050 and may thus exceed 5000 

km3/year by the middle of the century.

T change

°C
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1.2.	 Arctic Changes Affect Humans, Ecosystems  
and Earth Systems

Water is a fundamental component linking many of the environmental changes in the Arctic region, 

and society demands answers to how a changing Arctic Hydrological Cycle impacts humans, ecosys-

tems, and Earth systems. The Arctic Climate Impact Assessment (ACIA, 2005) summarized many of 

these changes, and stressed that not only are many of them already taking place, but they are also 

expected to accelerate over the next 100 years and beyond. Furthermore, Working Group II of the 

IPCC Fourth Assessment Report stated with high confidence that climate change (e.g. temperature 

increase) is affecting natural systems, including changes in snow, ice, and frozen ground/permafrost. 

There is also high confidence that impacts will include increasing coastal erosion, increasing sea-

sonal permafrost thawing depth, reduced extent of permafrost (Figure 1.9) and sea ice and decrease 

of river and lake maximum ice thickness (Figure 1.10). While there are both projected benefits and 

negative impacts of these changes, there is increasing concern about the extent to which the inhabi

tants of Arctic regions will be able to adapt to these changes in the future. The traditional way of 

life of the indigenous peoples of the North is intricately connected with the environment and 

changes in the water regime of rivers and lakes will strongly impact their way of life and local 

economies. And while reduced sea-ice extent will likely expand opportunities for shipping and off-

shore oil extraction in the Arctic, such industrial activities will also increase the risk of environmental 

degradation resulting from oil spills and other industrial accidents.

 

Recent studies have found evidence for considerable increase in winter runoff carried by Arctic riv-

ers, accompanied by a reduction in summer runoff, and these trends are expected to continue 

throughout the 21st century (Figure 1.11). These changes and other substantial hydrosphere changes 

(e.g. permafrost thawing) are expected to affect Arctic ecosystems in various ways. As a whole, the 

Arctic ecosystem is part of the higher-level global biosphere and changes in its characteristics will 

undoubtedly affect properties of ecosystems near the boundaries of the Arctic. The influence of the 

Arctic is firstly reflected through changes in heat and moisture exchange, which in turn affect other 

Figure 1.10 – Changes in the maximum ice cover thickness in 

the Lena river (Asian Russia) 1955-2009. From: A. Shiklomanov.

Figure 1.9 – Current and projected permafrost 

extent in the Arctic (ACIA, 2005).
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properties of the natural system. Changes in the Arctic ecosystem have already become evident not 

only as changes of the natural properties of the ecosystem itself, but have affected the conditions 

of management in different branches of the Arctic economic complex.

Changes in river discharge regimes, their intensity and flood frequency have direct consequences for 

the transfer of pollutants to the Arctic Ocean. Through changes in hydrology, fine river sediments 

carrying contaminants can spread even further into open waters. Thawing permafrost will release 

sediment, nutrients and organic carbon which will enter hydrological and biological cycles. Solid 

Fig. 1.11 – Trends in historical data and future projections in winter and summer runoff for the Nordic countries.  

A substantial part of the runoff from this region forms a component of the Arctic Hydrological Cycle. 

Top left: Trends in observed runoff for winter (Dec., Jan., Feb.) for the period 1941-2002.

Top right: Trends in observed runoff for summer (Jun., Jul., Aug.) for the period 1941-2002.

Bottom left: Percentage change in runoff for winter (Dec., Jan., Feb.) from 1961-1990 to 2071-2100, predicted by the Max-

Planck Institute’s ECHAM4/OPYC3 atmospheric general circulation model, using the SRES B2 emission scenario.

Bottom right: Percentage change in runoff for summer (Jun., Jul., Aug.) from 1961-1990 to 2071-2100, predicted by the 

Max-Planck Institute’s ECHAM4/OPYC3 using the SRES B2 emission scenario.

Source: Nordic Climate and Energy Project (see: www.os.is/ce and Fenger, 2007).
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Society demands answers to questions of how a changing Arctic  
Hydrological Cycle will impact humans, ecosystems, and earth systems

The Chukochiye River meanders through the tundra 

of the Kolyma delta region, Siberia, Russia.

The Trans-Alaska pipeline is designed to keep per-

mafrost frozen by the use of thermosiphons. Perma-

frost is warming in interior Alaska, where this pic-

ture was taken. 

Buildings Dawson, Yukon Territory, slumping  

together because of thawing of underlying perma-

frost.

Saami herder in a boat leads his reindeer herd to 

summer pastures on an island. Norway.

waste dumps in small Arctic communities, mine tailings and oil drilling sumps will be washed away 

with thawing permafrost into the rivers flowing into the Arctic Ocean. There is evidence that climate 

change will be accompanied by the increased flux of heavy metals and organochlorine compounds. 

Finally the leading concern for the Arctic is the risk of oil spills from both onshore and offshore ex-

ploration and production. This problem may be accelerated by leakages from corroded pipelines due 

to permafrost melting and by more frequent incidence of oil spills in rivers and estuaries.

Intensive commercial activities such as oil and gas production, navigation, fishery, mining operations, 

water and hydraulic engineering and transport of freight by winter roads are conducted in the Arc-

tic river basins. All above mentioned activities are in one way or another associated with moistening 

of the basins, their water resources, rivers’ hydrologic and water conditions and water pollution. The 

changes in these characteristics that have occurred during the last 20-25 years and will occur in the 

future may seriously disturb the functioning of these industries.
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Figure 1.12 – Mean surface air temperature (°C) in the Arctic region for January, April, July and October. From:  

Serreze and Barry: The Arctic Climate System. (Cambridge, 2005). Adapted and updated from: Rigor et al. (2000).

1.3.	 Studying Water is Fundamental to our 
Understanding of Arctic Climate Change

Climate of the Arctic

The strong summer-winter contrast in solar radiation affects the climate in all Arctic areas (Figures 1.12 

and 1.13). The summertime absorption of solar energy is generally low due to the high reflectivity 

(albedo) of snow and ice surfaces and solar radiation is small or absent in winter. Maritime conditions 

prevail over the Arctic Ocean, coastal Alaska, Iceland, coastal Northern Norway and adjoining parts of 

Russia whereas continental climate dominates the interior regions of Siberia, Arctic Canada and Cen-

tral Alaska. The winter climate is characterized by the frequent occurrence of inversions, whereas 

Arctic weather patterns during summertime are dominated by the movement of low pressure systems 

(cyclones) across Siberia and into the Arctic Ocean basin. In many Arctic and sub-Arctic regions, the 

weather is controlled by semi-permanent low pressure systems that are weakly developed in summer, 

but stronger in winter. The most important of these low pressure systems are the Icelandic Low and 

the Aleutian Low. In winter, eastern Eurasia is dominated by the semi-permanent Siberian High. High 

pressure is also prevalent over the Canadian Arctic Archipelago during the cold season.
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Figure 1.13 – Mean annual precipitation (mm) based on available bias-adjusted data sources. Contour intervals are 

100 mm (solid, for amounts up to 600 mm) and 200 mm (dotted, for amounts 800 mm and greater). 

From: Serreze and Barry: The Arctic Climate System. Cambridge University Press 2005.

Figure 1.14 – Surface inflow into the Arctic Ocean (4270 km3/year in total). From: A. Shiklomanov.

Water in liquid form

Water is a fundamental component linking many of the environmental changes in the Arctic region. 

About 65% of the total terrestrial Arctic drainage area (without Hudson Bay) of 19*106 km2 is 

monitored at present. The mean annual drainage is estimated to be 4300 km3 and the four largest 

drainage basins, the Ob, Yenisey, Lena and Mackenzie, contribute about 63% of the total gauged 

volume discharge to the Arctic Ocean (Figures 1.14 and 1.15).



22 Issues and Rationale

Figure 1.15 – Storage and flux estimates for the pan-Arctic water cycle, synthesizing existing literature-based esti-

mates and modelling results. Arrows show direction and relative sizes of fluxes linking major domains. A dominant 

pathway for fresh water into the pan-Arctic is atmospheric moisture transport, then deposited on land and sea by 

net convergence (snow and rain minus evaporation). Freshwater then moves to the Arctic and ultimately to the 

North Atlantic Ocean. Budget closure has been relatively well-established but required substantial interpretation, 

extrapolation of existing information and expert judgment. Through its integrated monitoring systems, including 

integrated hydrographic stations, Arctic-HYDRA will help to provide a new level of consistency not previously avail-

able in the baseline information, from which future syntheses can be drawn.  Modified from: Serreze et al. (2006).
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CAA = 3200

Fram Strait
Upper Water
FSU = 2400

Fram Strait Ice
FSI = 2300

* Resid. is the residual of observed precipitation 
minus aerological (A) P - ET

Land

Total Outflow (R)	 =	 3200
Total Inflow (P - ET)L	 =	 2900
Imbalance	 =	 -300

Po

Obs = 3300
(P - ET)o

E40(A) = 2000
(P - ET)L

E40(A) = 2900

ETL

Resid.* = 4800
PL

Obs = 7700

R
Obs = 3200

V∇.Q
E40 = 4900

ETo

Resid.* = 1300

The Arctic is dominated by long cold winters with many months of snow accumulation, but the  

hydrological cycle is much more dynamic in the summer months when liquid water abounds. Most 

watersheds in the region receive more precipitation in the summer months than during the entire 

cold season. Both runoff and evapotranspiration compete to be the largest exporters of water from 

a basin. Although many terrestrial areas of the Arctic appear to have copious amounts of water after 

snowmelt, this vision is deceptive since in one short summer this water disappears. Major floods are 

rainfall and snowmelt generated, except for the largest basins (those of the Lena, Ob, Yenisey and 
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Mackenzie rivers), in which basin-wide rainfall is never attained and thus snowmelt only produces 

the floods of record.

In areas of continuous permafrost, storage reservoirs of liquid and solid water are limited. The active 

layer above the permafrost has a storage capacity roughly equivalent to annual precipitation, but 

much of the storage is already occupied by soil water. Lakes, ponds and wetlands are often plentiful 

in low-gradient watersheds and provide surface storage. Water is stored in the snowpack for a few 

months in all catchments and many small Arctic rivers freeze up to the bottom during wintertime. 

Aufeis deposits (floodplain icings) and glaciers are capable of storing water in solid form from a few 

months to thousands of years. In areas of discontinuous permafrost or permafrost free areas, sub-

stantial subsurface storage is available and changes are hard to quantify.

The terrestrial part of the pan-Arctic water cycle feeds large quantities of freshwater and water-

borne substances from land to sea. With the Arctic experiencing relatively large climate change ef-

fects, associated changes in water release from the cryosphere to the local and regional hydrology 

will modulate erosion, nutrient release and downstream sediment and solute/pollutant transport by 

surface and subsurface waters, and thereby the biogeochemistry of both inland and recipient coast-

al and marine water systems. 

Recent studies of long-term hydrometric data for the Eurasian Arctic indicate that the annual dis-

charge to the Arctic Ocean from the six largest Eurasian rivers increased by 7% between 1936 and 

1999, implying that the annual freshwater inflow to the Arctic Ocean is is now about 130 km3 

greater than it was in the mid-1930´s.

Snow, ice and permafrost

The cryosphere is the frozen part of the Earth system, in which frozen water is bound in snow, ice 

sheets, ice caps, glaciers, snow, lake and river ice, frozen ground (seasonally or as permafrost) and sea 

ice. Water as ice has a strong influence on surface and subsurface water and energy fluxes, as well as 

vegetation, thereby influencing land surface-atmosphere interactions. It affects gas and particle 

fluxes, clouds, precipitation, hydrological conditions, and atmospheric and oceanic circulation. There 

are strong and complex relations between the cryosphere and climate systems, including feedback 

mechanisms. In the polar areas, the hydrological cycle is strongly affected by the spatial and temporal 

variation in ice. For example, precipitation is stored as snow for a relatively long duration before be-

ing released as runoff during a short period of time in the spring. This controls water flow and river 

ecology, floods and droughts, hydropower production, agriculture, transport on rivers, etc. 

The Greenland ice sheet and glaciers and icecaps in the Arctic (Figure 1.16) provide a substantial 

freshwater flux to the Arctic Ocean. Data on the coupled glacier-river freshwater input to the Arctic 

Ocean and changes in variation and magnitude is important to climate modelling and for understand-

ing the total effects of changes in the freshwater cycle in the Arctic. Seasonally or permanently frozen 

ground is characteristic of a large part of the Arctic basin. Changes in this regime due to climate 

change, for example air temperature or snow cover may have profound changes to the temporal and 

spatial distribution of frost. Melting of permafrost will change the regional fluxes of methane, and 

affect river sediment fluxes, ecology and habitats, infrastructure and transport. River and lake ice af-

fect the energy fluxes, flow of water and biological production and diversity in the river-lake sys-

tems.
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Region	 Glaciated area (103 km2)

Greenland Ice Sheet 1640.0

Canadian Arctic (>74º N) 108.0

Canadian Arctic (<74º N) 43.4

Alaska 75.0

Iceland 10.9

Svalbard 36.6

Franz Josef Land 13.7

Novaya Zemlya 23.6

Severnaya Zemlya 18.3

Norway/Sweden 3.1

Fig. 1.16. – Ice-covered areas in the Arctic and the location of glaciers and ice caps for which mass balance data are 

available. Wo: Wolverine Glacier, Gu: Gulkana Glacier, Mc: McCall Glacier, MSI: Melville South Ice Cap, Ba: Baby 

Glacier, Me: Meighen Ice Cap, DI: Devon Ice Cap, Dr: Drambui Glacier, Ho: Hofsjökull, Tu: Tungnárjökull, Br: Austre 

Brøggerbreen, Ko: Kongsvegen, En: Engabreen, Sg: Storglaciären, IG: Igan, Ob: Obruchev, Va: Vavilov, Ha: Hansbreen, 

Wh: White, Be: Bear Bay, Fi: Finsterwalderbreen, Ma: Märmaglaciären, Sts: Storstrømmen. 

Source: ACIA (2005).

Table 1.1 – Ice coverage in Arctic regions with extensive  
glaciation (Dowdeswell and Hagen, 2004).

x 103 km2
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1.4.	An Integrated, International pan-Arctic  
Approach is Necessary

The Arctic-HYDRA concept envisions systematic quantification of the Arctic Hydrological Cycle during 

the early 21st century through more effective collaboration of national hydro-meteorological services, 

numerical weather prediction and modelling centers and space agencies in the Arctic countries. The 

current lack of integration impedes the assembly of a system-wide picture. Basic stocks and fluxes of 

water throughout the pan-Arctic water system (Fig. 1.15) have only recently been assembled, attest-

ing to the difficulties inherent in distilling fragmentary data (both spatially and temporally) from 

several sources, whose original intent may not have been to contribute directly to synthesis.

In this context, Arctic-HYDRA will provide a framework to:

• 	 Design and execute a systematic process to evaluate the utility of key historical and 

operational data sets depicting the geospatial distribution of water cycle variables,  

using information generated over the satellite era and capable of assessing the fully 

pan-Arctic domain.

• 	 Apply the evaluation process to create optimal deployments of monitoring network 

and remote sensing resources to construct an operational, contemporary depiction of 

the pan-Arctic water cycle.

• 	 In concert with regional and global modelers, assess the effectiveness of current moni-

toring resources to detect plausible scenarios of Arctic environmental change.

•	 To provide feedback to data providers on the efficacy and value of their data sets to the 

user communities and to propose concrete suggestions on ensuring their relevancy.

Systematic planning, to unite in situ monitoring, remote sensing, and geospatial modelling is necessary 

to ensure that efforts such as the 2007-09 International Polar Year (IPY) and the longer term ICARP-II 

(to 2020) map directly to the improvement of our understanding of the Arctic as a system and as part 

of a larger set of global water and energy cycle systems. With this objective in mind, the value of inte-

grated water cycle observing and analysis systems becomes obvious. The structure of such a system, to 

be implemented within the framework of the Arctic-HYDRA collaboration, is described in Chapter 3.
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2.1.	 Severe Decline in Observational Networks has 
Reduced the Scientific Community’s Ability to 
Detect the Nature of Changes in the Arctic 
Hydrological System.

Figure 2.1 – Hydrological stations represented in the Arctic Runoff Data Base, maintained by the Global Runoff Data 

Centre (see: http://www.bafg.de/GRDC/EN/02__Services/05__Special__DBs/ARDB/ardb.html). The drainage basin 

of the Arctic Ocean occupies a total area of 18.9*106 km2 [Shiklomanov and Shiklomanov, 2003; Table 2 – but 22.5*106 

km2 if adjoining areas are included, see their Table 1] and the total river runoff into the ocean is estimated to be 4270 

km3/yr. The network of hydrometric stations operated within the AO basin is very uneven and no observations are 

carried out in one-third of the region. The observation series are of unequal lengths, covering 55-65 years in Eurasia 

but mostly not longer than 40 years (2003) in the North American part of the Arctic drainage basin. Numerous gaps 

exist in the North American observation records, particularly in Canada, where many observations at hydrometric 

stations are carried out only during the warm period of the year. 

Source: Global Runoff Data Centre
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Status of Hydrological Monitoring in the Arctic

Access to comprehensive and reliable data sets on Arctic hydrology is of crucial importance for stud-

ies focusing on the role of the Arctic in the climate system. The rivers draining to the Arctic Ocean 

redistribute moisture from temperate regions to the high latitudes, and also connect very large and 

heterogeneous areas to the Arctic Ocean and its shelf seas. 

The Arctic Runoff Data Base, ARDB, which is collected and maintained at the Global Runoff Data 

Centre, GRDC, in Koblenz, Germany, provides station information and data series of runoff gauging 

stations in the Arctic region. With more than 2400 stations represented (Figure 2.1), this is the most 

complete international dataset on daily (1024 stations) and monthly (2405 stations) runoff in the 

Arctic. Another service, maintained by the University of New Hampshire, USA, provides freely avail-

able pan-Arctic river runoff data from nearly 60 stations, in near-real time.

Although Arctic nations currently expend about $100 million annually on the collection of hydro-

logic data, the number of sites at which data are collected has been declining (Figure 2.2). Many sites 

with long-term records have been discontinued in the past several years as funding has failed to 

keep pace with costs. As development and resource extraction in the Arctic increases, the need for 

hydrologic data will increase.

In the United States, the U.S. Geological Survey (USGS) is the primary agency that monitors streamflow; 

although many of these stream gauges are funded through partnerships with other Federal, State, and 

local agencies. Throughout the U.S. from 1980s through 2000, about 1,790 stream gauges, including a 

few in the Arctic, with more than 30 years of record, were decommissioned due to a lack of funding. 

To reduce the loss of critical stream gauges, the US Congress funded the National Streamflow Informa-

tion Program (NSIP) of the USGS in 2001. That funding allowed the USGS to add about 500 stream 

gauges to the network, but funding has not kept pace with costs and in 2004 and 2005 there was a 

net loss of about 150 stream gauges. The USGS currently operates more than 120 stream gauges in 

Alaska, however, fewer than 20 are funded through NSIP and the rest rely on funding partners. 

In Canada, the majority of climate, hydrometric and water quality stations are located in the south-

ern half of the country, where the population and economic pressures are greatest. As a result, the 

adequacy of the network to describe hydrological and climatological characteristics, both spatially 

and temporally, decreases significantly in the northern part of the country and is particularly poor 

in the Canadian Arctic Archipelago. For example there are significant limitations in Canada’s ability 

to estimate freshwater streamflow within Arctic Ocean tributaries, past, current or future. There is 

relatively good information on flows from large rivers (f.ex. the Mackenzie) which may constitute 

roughly 60-80% of discharges to the Arctic. There is great uncertainty associated with the estimates 

Figure 2.2 – Changes in the number of 

observational points for the river runoff 

into the Arctic Ocean from 1935 to 2000 

according to data from the State Insti-

tute of Hydrology, Russia, the Environ-

ment Agency of Canada, and the U.S. 

Geological Survey. Solid, dashed and 

dot-dashed lines are the entire Arctic 

drainage basin and its Russian and North 

American parts, respectively. From: Shik-

lomanov & Shiklomanov (2003).
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of ungauged streamflow to the Arctic Ocean, largely due to the paucity of monitoring. Furthermore, 

streamflow estimates for small catchments across northern Canada are particularly poor. Therefore 

present estimates of the total Canadian flow to the Arctic, and the proportion that is gauged, can 

currently be considered uncertain.

The discharge to the Arctic Ocean from Eurasia is better monitored than from North America be-

cause most of the river inflow is delivered through a small number of large rivers with long-term 

operating downstream gauges. Only 10 hydrological gauges are sufficient to capture 80% of the 

total Arctic Ocean drainage area in Russia. Hydrometric observations on small and medium size rivers 

in the Russian Arctic are sparse and ungauged or poorly monitored areas dominate many parts of 

the region. Over the last 10 years the accessibility of river discharge data for the pan-Arctic has been 

significantly expanded by the release and regular updates of the University of New Hampshire’s R-

ArcticNet database (http://www.R-ArcticNet.sr.unh.edu). However, sharp declines in Russian hydro-

metric gauging networks in the 1990´s and delays in data reporting hamper research progress. Since 

2000 governmental funding of Russian monitoring networks has improved and as a result the 

number of operating gauges has stabilized or even slightly increased. There are still significant de-

lays in the timely delivery of Russian hydrological data to the international research community and 

the Arctic Rapid Monitoring System for the pan-Arctic (ArcticRIMS, http://rims.unh.edu/) was devel-

oped to facilitate and accelerate data reporting for the most important Russian river gauges.

Patterns in the reported decline of monitoring have recently been analyzed, to see how they com-

pare with the geographical distribution of observed and predicted Arctic-wide climate changes. 

Figure 2.3 shows how station density has changed since the 1970s, in relation to observed tempera-

ture change. The vertical axis is the fraction of stations with accessible data for 1995-1999, as a 

proportion of the stations with accessible data for 1975-1979. A fraction of 1 means that the station 

density is the same today, and a fraction of 0.2, for instance, means that only 20% of the stations 

operational in the 1970’s still provided data in the 1990’s. The horizontal axis shows the mean ob-

served temperature increase during 1995-2002, relative to the 1961-1990 average. It is evident that 

the decline in network density has been greatest for four Eurasian basins. For the Kara Sea drainage, 

data from 520 stations is no longer available.

Figure 2.4 shows the change in density of hydrological stations in the Arctic in relation to predicted 

21st century temperature changes. The vertical axis again indicates the change in station density since 

the 1970’s but the horizontal axis now shows the modeled temperature increase, for the 2050’s and 

IPCC’s A2 emission scenario. Here, it appears that the largest future temperature increase is expected 

in the four basins with the greatest decline in discharge monitoring, and that uncertainty of the fu-

ture temperature change, as reflected by the range is also particularly large in these basins.

In order to quantify mass fluxes of, e.g., carbon and nutrients, water chemistry monitoring, used in 

concert with water discharge monitoring, is crucial. Unfortunately, such data for the Arctic region 

are even more sparse than runoff data. A recent study has quantified the spatial and temporal ex-

tent of water chemistry monitoring of four important constituents in the pan-Arctic drainage basin. 

Results indicate that accessibility to water chemistry data is severely lacking, both spatially and tem-

porally (Figure 2.5). Accessible nitrogen and phosphorus monitoring covers 62% of the non-glaciated 

Arctic Ocean drainage basin area, sediment monitoring covers 63%, and carbon monitoring covers 

only 51%. The relatively low accessibility to water chemistry data means that important budgets of 

carbon, sediment and nutrients cannot be closed for large areas of the Arctic.
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Figure 2.3 – Change in density of hydrological 

stations in relation to observed temperature 

changes. Circle sizes correspond to the absolute 

number of closed stations. Adapted from: Bring 

and Destouni (2008).

Figure 2.4 – Change in density of hydrological 

stations in relation to predicted 21st century tem-

perature changes. Circle sizes correspond to the 

absolute number of closed stations and the col-

our of the circles indicates the range in tempera-

ture between the three models used for the 

study. Adapted from: Bring and Destouni (2008).

Figure 2.5 – Overview of the maximum length of accessible data series (years) for pan-Arctic monitoring of 

(a) sediment, (b) carbon, (c) nitrogen and (d) phosphorus.   Adapted from: Bring and Destouni (2009).
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2.2.	Loss of Monitoring Capacity Hampers Advance in 
the Understanding and Interpretation of the Causes 
and Impacts of a Changing Arctic Hydrosystem

Improved knowledge of the Arctic Hydrological Cycle is of crucial importance to efforts aimed at 

understanding the Arctic as an integrated system. The Arctic is unlikely to ever have the density of 

streamflow monitoring sites seen in more developed areas. Poorly developed infrastructure and 

extreme conditions make access and data collection using traditional methods a challenge. Large 

ungauged areas will continue to exist and as such, a strategy for maximizing the value of data col-

lection is called for. Within constraints of funding partners, a network should be designed that ad-

equately characterizes defined sets of landscape variables so that runoff models may be developed 

that utilize existing data and new, remotely sensed data. Arctic-HYDRA offers the opportunity to 

examine characteristics of gauged basins in the pan-Arctic and develop a network analysis that iden-

tifies gaps and potential redundancies in coverage of various landscape types. Such a network 

analysis would allow the individual hydrological services agencies to best prioritize locations for ad-

ditional data collection that maximizes the value of the data to the overall network.

In view of the sparse (and declining) station networks, scientists are forced to rely on results, often 

divergent, from runoff models to analyze the state and variability of the land surface hydrologic 

cycle across the pan-Arctic system. Land Surface Models (LSM´s) are forced with gridded time series 

of downwelling shortwave and longwave radiation, precipitation, near-surface winds, humidity and 

surface-air temperature. Output variables include soil moisture and temperature, snow water equi

valent, runoff, latent and sensible and ground heat fluxes and upward shortwave radiation.

Although models offer great potential for enlightenment regarding large scale hydrological chang-

es, recent modelling efforts have revealed substantial deficiencies in the ability of models to capture 

various key aspects of pan-Arctic hydrology (Figures 2.6 and 2.7). Comparison between results from 

five different LSM´s revealed up to a 30% difference in annual partitioning of precipitation between 

evaporation and runoff within major Arctic watersheds such as the Lena. Capturing the correct base-

flow of the large rivers is a consistent problem and modeled hydrographs are often out of phase, 

peaking too early in comparison with observations (Figure 2.6). Sufficient monitoring data is critical 

for narrowing these ranges in estimates.

•	 CHASM (Combined Hydrology and Stability Model) – Bristol Innovations Software (UK) 

	 http://chasm.info/

•	 NOAH (The Community NOAH Land-Surface Model) – NOAA (US) 

	 http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm

•	 CLM (Community Land Model) – UCAR (US) 

	 http://www.cgd.ucar.edu/tss/clm/components/hydrocycle.html

•	 VIC (Variable Infiltration Capacity Macroscale Infiltration Model) – University of Washington (US) 

	 http://www.hydro.washington.edu/Lettenmaier/Models/VIC/

•	 ECMWF (European Centre for Medium-Range Weather Forecasts) – Reading (UK) 

	 http://www.ecmwf.int/about/

Models used to produce the results shown in Figs. 2.6 and 2.7:
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Figure 2.6 – Modelled mean monthly discharge (five different models) in the four main Arctic river basins 

compared with data from observations. From: Slater et al. (2007).

Figure 2.7 – Annual average of drainage from the base of the soil column as a proportion of total runoff. One of the 

models (the VIC model) produces strikingly higher soil drainage than the other models, reflecting the ability of this 

model to allow for soil infiltration during the spring snowmelt period.  From: Slater et al. (2007).



34 Arctic-HYDRA: Integration and Implementation 

Extensive comparison of LSMs has been carried out under the Project for Intercomparison Study of 

Land Surface Parameterization Schemes (PILPS). Some results from one such study are summarized in 

Figures 2.8 and 2.9, comparing simulations of land surface processes from 21 models run for the 

Torne-Kalix (58,000 km2) catchment in Northern Scandinavia. From Fig. 2.8, a large scatter in the pre-

dicted March snow water equivalent (SWE) is evident, with averaged modeled SWE over the basin 

ranging from 119-268 mm. Models with high latent heat flux and an average downward sensible heat 

flux (a heat source for the surface) tend to have the lowest snow accumulation. Fig. 2.9 shows that 

the modelled mean annual runoff in the Torne-Kalix basin is found to differ substantially, from 301 

to 481 mm. For some models subsurface runoff dominates, while for others, runoff is solely from the 

surface. Differences in modeled snow accumulation and surface-subsurface runoff partitioning con-

tribute to large variations in the shapes of mean hydrographs.

Fig. 2.8 (left) – Basin averaged snow water equiva-

lent (SWE) for March from the 21 PILPS 2e land sur-

face models (listed as A-U), over the period 1989-

1998.   From: Bowling et al. (2003).

Fig. 2.9 (right) – Total basin mean annual surface 

and subsurface runoff from the 21 PILPS 2e land 

surface models (listed as A-U) over the period 1989-

1998. The dashed horizontal line is the observed 

mean annual runoff at the mouths of the Torne and 

Kalix rivers combined.   From: Bowling et al. (2003).
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3.1.	 Arctic-HYDRA: An Integrated System  
for Arctic Hydrology studies

Previous sections have highlighted the importance of hydrological studies for our understanding of 

past, present and future change in the Arctic. Moreover, further research progress is hampered by 

the decline in monitoring systems and participants in Arctic-HYDRA are thus proposing to launch a 

new research effort focusing on the following major overarching questions:

 

•	What is the role of the unified Arctic Hydrological Cycle  
in the global climate system?

•	What are the feedbacks of changes in the Arctic Hydrological Cycle  
on the regional and global climate systems?

•	What are the impacts of changes in the Arctic Hydrological Cycle  
on biology, biogeochemistry, and human society?

The Arctic-HYDRA programme will form a large umbrella for hydrological research in the Arctic. As 

a multidisciplinary effort, it will link hydrology with many other fields of science in geophysical, 

environmental and social sectors. The spatial focus is the Arctic Ocean drainage basin, but climate, 

ocean and land-atmosphere processes connect Arctic-HYDRA with global studies. The initial net-

working phase of the programme was contemporaneous with the International Polar Year (IPY) 

period 2007-2009, combining various project ideas submitted to the IPY management office.

Given the scope of these objectives and the relatively short time-frame of the IPY, Arctic-HYDRA was 

also conceived to form part of the parallel longer term (10-15 yr) objectives of the ICARP-II (Interna-

tional Conference on Arctic Research Planning) and its Working Group 7 project, “Terrestrial Cry-

ospheric & Hydrologic Processes and Systems”. Thus, the Arctic-HYDRA consortium has been using 

IPY as a steppingstone to longer-term, comprehensive water cycle studies (e.g. ICARP-II) and within 

ISAC (International Study of Arctic Change). 
 
As an extensive and multi-dimensional activity Arctic-HYDRA calls for integration. There are many 

possibilities to implement integration and gain synergy: between operational hydrological services, 

between disciplines, between regions, between data controlling systems – and between combina-

tions of these components. Effective use of integration is an important strategic goal of Arctic- 

HYDRA, and it can be applied widely within the programme. 

Figure 3.1 illustrates the principle of an integrated hydrological system, a concept that has been de-

veloped for the planning of Arctic-HYDRA. The basic blocks of this concept are observation systems, 

process studies, models, and data-information systems that are effectively linked to produce synergy 

benefits. Within the framework of this system, Arctic-HYDRA consists of a core network for observa-

tion of the Arctic Hydrological Cycle (AHC), coupled with a suite of intensive, focused process studies 

that are based on in-depth measurements and modelling of the individual components of the AHC. 

Furthermore, large scale hydrological models and data assimilation techniques will be developed to 

generate a comprehensive, integrated description of the AHC including the key variables necessary 

to quantify feedbacks between the atmosphere, cryosphere and the oceans. The project will establish 

links with other projects with focus on meteorology, climatology, the cryosphere (including perma-

frost, snow cover and glaciers), the biosphere and on societal issues affected by the AHC.
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Figure 3.1 – Basic components of the Integrated System for Arctic Hydrology.

The basic blocks of the integrated hydrological system interact at several levels. The monitoring and 

data systems continuously transfer almost real-time data into operational hydrological models, and 

if models diagnose some data as inconsistent, this feedback is communicated into the data and 

monitoring systems. Most ground observations are point measurements, while models produce re-

gional values for precipitation, snow, evaporation and other variables. As wide scale models also 

simulate run-off for a high number of sub-basins, in-situ measurements are not always needed. On 

the other hand, real-time observations at important sites keep the status of large scale models cor-

rect. Satellite images of snow cover are used in the snow calculations of hydrological models. Good 

quality geo-information on water resources is essential basic information for hydrological models, 

and map interfaces have proven to be applicable, informative and user friendly. The list of examples 

could be continued.

In addition to the operational components (observation, real-time modelling and data systems), the 

integrated concept includes process studies. Process studies are made for various purposes, but two 

main objectives and categories can be marked out. On one hand, large scale process studies aim at 

better modelling at a river basin scale. This work can be considered as model development, and to 

be successful, it should seek for balance between relevant science aspects and simple, applicable 

solutions. On the other hand, small scale process studies produce new information on hydrological 

processes. During the project phase, large and small scale studies are separate processes, but in the 

long run, they interact. Thus both categories of process studies are linked with operational model-

ling and furthermore with observation and data systems. Figure 3.2 shows some main interactions 

within the integrated hydrology system.

The above discussion emphasises that structures and contents of monitoring programmes should 

support both modelling and process studies, and vice versa, new scientific knowledge should be used 

for the optimization of monitoring systems. This integration is cost effective – both from the point 

of view of systems operation and scientific relevance.

Integrated System for Hydrology Basic blocks

Process studies
•	 small scale for new scientific knowledge
•	 large scale for river basin applications

Observation system
•	 real-time hydrological
•	 real-time meteorological
•	 archival hydrological
•	 affiliated environmental

Models
•	 small scale for focused process studies
•	 large scale for operational use and impacts research

Data-information system
•	 dissemination of data and information: database operational products,
	 scientific library, links between operational and scientific partners
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3.2 Components of the Integrated System

Observation System

There are well-recognized uncertainties in observations of many elements of the Arctic Hydrologic 

Cycle including evapotranspiration, precipitation, soil and groundwater. At the same time river dis-

charge as an integrated characteristic of hydrological changes is one of the most accurately meas-

ured components of the cycle. Recent comprehensive assessment of river discharge accuracy for large 

Russian rivers showed that uncertainty of annual discharge is only ± 2-7%.

Despite the value of existing discharge information (Figure 3.3), ungauged or poorly monitored ar-

eas dominate many parts of both the North American and Eurasian Arctic, as discussed in Section 2.1. 

During the last decade, the accessible discharge coverage for the pan-Arctic was significantly ex-

panded by releasing the R-ArcticNet database (http://www.R-ArcticNet.sr.unh.edu). However, recent 

sharp declines in Russian and Canadian hydrometric gauging networks and delays in data reporting, 

especially for Russia, hamper the research progress. Sparse or lacking monitoring networks in the 

northern, remote regions, experiencing most dramatic climate changes (IPCC, 2007; ACIA, 2005) 

constitute another major gap in our knowledge (Section 2.1). The similar situation is typical for 

other ground observational networks.

During the last decades, significant progress has been achieved in remote sensing technology. Re-

mote sensing products can provide critical observational support to study the hydrological cycle in 

the pan-Arctic and can reveal complex spatial variations that cannot be readily obtained through 

traditional in situ approaches. The precipitation data from the Global Daily and Monthly Merged 

Figure 3.2 – Interactions between the main components of the Integrated System for Arctic Hydrology. 
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Precipitation Analyses being produced by the Global Precipitation Climatology Project (GPCP) along 

with snow water equivalent information from active and passive microwave platforms (SMMR-SSM/I, 

AMSR-E) are very important to improve our knowledge about precipitation and spring snow storage 

across the pan-Arctic. Satellite altimetry over lakes and reservoirs, started in the 1990’s, is another 

critical instrument to track changes in water level/storage of medium and large water bodies and is 

an important complement to ground based stations. Remote sensing information characterizing the 

conditions and changes in land cover is very important for the understanding of large-scale hydro-

logical processes.

There is a clear need to establish a more balanced operational system for the monitoring of Arctic 

hydrology. An important contribution in this direction will be the Arctic Hydrological Cycle Observ-

ing System (Arctic-HYCOS), based on the WHYCOS concept developed by WMO, which is intended 

to become the basic monitoring component within Arctic-HYDRA (see section 3.4).

The main goal of Arctic-HYCOS will be to improve monitoring, data accuracy, availability and dis-

semination for the pan-Arctic drainage basin. To address this goal the HYCOS will be organized 

around several research objectives:

•	 Develop an optimal design for hydro-meteorological monitoring networks to cap-

ture the essential variability of the Arctic hydrological system and to enable  

accurate and efficient assessment of water cycle change.

•	 Estimate uncertainty of available in-situ and remote sensing data, including  

analysis of accuracy and systematic errors of new observational technologies.

•	 Develop an integrated pan-Arctic data consolidation and analysis system for the 

water cycle, uniting data from in situ, model, and remote sensing sources to gener-

ate an integrated view of key components of the pan-Arctic hydrosphere.

Fig. 3.3 - Long-term mean annual runoff in the pan-Arctic from observational data. This graphic is based on data 

from the Global River Discharge Database RivDis v1.0 [UNESCO/University of New Hampshire (1996) - data from 

1998] and from the R-ArcticNET v4.0 database: A Regional, Electronic Hydrometeorological Data Network For the 

pan-Arctic Region [University of New Hampshire (2005) - data from 2006]. Only gauges and watersheds larger 5000 

km2 are shown.  From: Shiklomanov et al. (in press).
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Process studies 

Process studies have been an important focus of hydrologists studying the Arctic, yielding critical 

knowledge on dynamic linkages in the water cycle. However, the studies have generally been per-

formed over short time periods and at a small scale and the short duration of most studies has resulted 

in failures to capture both the natural variability of processes and the occurrence of extreme events.

For process studies, the uniqueness of the Arctic lies in the presence and impact of permafrost, and 

in the extreme climates that generate the dominance of frozen soils. In the recent period of Arctic 

warming, there has been a renewed and growing interest in how the magnitude of many of these 

fluxes and storage domains may be changing and how these changes may influence other aspects of 

the hydrological cycle of these extreme cold environments. A number of relevant scientific issues can 

be raised due to the foreseen change – issues that have profound environmental and social impor-

tance.

Because of the increased awareness of climate change, there has been a reinvigorated realization of 

the need to enhance hydrological observations. Past simplified cause and effect approaches to ad-

dressing water resource issues are not going to be up to the task in a world with a changing climate. 

There is a need to develop physically based hydrological models that do not need to be calibrated. 

Such models need to be able to predict the hydrological response at watershed scales that can also 

be coupled with atmospheric models; to accomplish this, the research watersheds will need to be at 

least 10,000 km2 or larger.

This will require process studies both over a wider range of spatial settings and longer durations 

where the natural variability is captured. From the point of view of data availability, the current sta-

tus needs to be improved: although the hydrological data available from the northern research basins 

is the best available, it will not be sufficient to address issues pertinent to climate change. For exam-

ple, data collection needs to be designed both spatially and temporally, so that basic monitoring 

stations (such as snow stations) can be located at or very close to research catchments, and high time 

resolution of modern equipment can be utilized during dynamic times of hydrological seasons.

 

The above conclusion stresses the need for integration between various scientific approaches and 

communities. Well designed and managed observation programmes and data systems are crucial for 

process studies and it is in the common interest of process studies and monitoring to develop tech-

nologies and practices for hydrological measurements. Coordination between basic monitoring and 

targeted monitoring experiments is important as well.

Models

Models serve both operational and scientific purposes, and their spatial scales and structures vary 

considerably. Both small and large scale models will be extremely important within the integrated 

Arctic-HYDRA programme.

Large scale modelling will be composed of river basin, regional and global/pan-Arctic models. As the 

Arctic Ocean drainage basin is very large, the current models should be mapped and evaluated, and 

the scientific community should set targets for pan-Arctic hydrological models and their integration 

with atmospheric and Arctic Ocean models. From the hydrological point of view, one of the greatest 

challenges is to include adequate ground and river system description into large scale models.

A basic model must also have high operational capacities. This type of a system can be continuously 

updated by use of real time observations, and it can assimilate satellite image information on snow, 
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soil moisture or flooding areas to produce still more accurate and real time hydrological forecasts 

and reports. In this way observations (e.g. water level, snow depth or equivalent) produce relevant 

real time hydrological information covering large areas. A large scale modelling system can also be 

used to produce real time hydrological maps of spatial precipitation, spatial temperature, water 

equivalent of snow, soil moisture, run-off etc., based also on real time or near real-time observations. 

The applicability of hydrological models is high – they can be successful e.g. in the simulation of 

climate change scenarios.

The Finnish National Watershed Simulation and Modelling System (WSFS) offers one example of this 

approach (www.environment.fi/waterforecast). The WSFS is used both for hydrological forecasting 

and warning, and simulation of the hydrological cycle (historical, real time, future scenarios). This 

system covers the whole country, and is automatically updated by real time observations, weather 

radar data, and satellite information.

Modelling systems benefit from all available geographical, hydrological and meteorological data as 

well as information on catchment area, basin subdivision, lake and river network maps and geo-

graphical data of lakes and flooding areas. A digital elevation map or area elevation information of 

the catchments is also needed to simulate the spatial distribution of precipitation and snow.

The above discussion serves to outline the strong and multi-level connections between modelling and 

monitoring. On the other hand, physically based modelling is an increasingly important tool in hydro-

logical process studies. Operational modelling can be connected to the data-information system in a 

very effective manner. Thus the point of view of an integrated concept is relevant in many ways. 

Data information system

As the core of an integrated system, the Arctic-HYDRA data-information system will operate a 

number of processes: data collection and transmission, data processing, scientific calculation applica-

tions, visualization applications, data storage (database), maintenance of a web-based scientific  

library, and updating and presentation of general programme information. The data-information 

system will also serve as the main user interface for Arctic-HYDRA.

The data-information system will communicate most of the scientific results achieved within Arctic-

HYDRA. They will include: real time monitoring data, prediction of the AHC, assessment reports 

based on monitoring and modelling, and results of process studies. 

The data-information system should include the following components:

•	 Local Area Networks in sub-regional centers, and in a Main Data-Information Centre 

•	 Data Transfer Interface

•	 Flexible, secure and reliable software

•	 Relation database, and

•	 Wide Area Network for user communication.

New technologies

Newer technologies covering a wide range from ground measurements to remote sensing are con-

tinually being developed and tested to allow safer and more cost-effective monitoring, while at the 

same time improving accuracy and reliability of the data. Examples include fully automated and 

robust data collection and distribution systems designed for remote hydrological monitoring net-

works. These are operational as stand-alone units or as a network of systems, allowing for expand-
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ability for future sensor and station additions. Typical sensor configurations provide water level, 

discharge, precipitation, and water quality parameters such as turbidity, DO, temperature, pH and 

conductivity plus a wide array of meteorological sensors such as wind speed, wind direction, relative 

humidity, air temperature, barometric pressure, dew point, rainfall, and solar radiation. Such net-

works can be remotely managed from a PC and measured information can be e-mailed, or posted to 

a web or FTP site in real-time. Telemetry choices include VHF and UHF, Iridium, Inmarsat D+, GOES, 

ARGOS, Globalstar, Orbcomm, cellular phone (GSM or CDMA), and landline.

For deployment in water, environmental monitoring buoys have been designed for use in coastal 

areas, lakes, reservoirs and rivers. The measurement platforms can be configured with a wide range 

of sensors for monitoring weather, air & water quality, waves and currents. Special ice buoys with 

subsurface mooring systems have been designed for Arctic lake monitoring.

Acoustic Doppler technology is now in common use for measuring stream velocity in Europe and 

North America. This technology may also be incorporated with an instrument package that includes 

ground-penetrating radar and is mounted from a helicopter. This platform eliminates the need for 

human operations on the river surface during dangerous ice-break up conditions. Stage sensors now 

include both radar and laser technology as well as the traditional pressure transducers.

The Russian hydrometeorological agency “Roshydromet” is realizing a project with support from the 

International Development Bank and a guarantee from the Russian government to organize several 

mobile groups equipped with these new instruments to provide better discharge observations on 

remote large and medium size rivers, particularly in Siberia.

The water balance of large river basins can now be monitored from space on timescales ranging 

from days to decades. The remote sensing techniques include satellite altimetry on surface waters 

(rivers and their tributaries, wetlands and floodplains) and space gravity missions that provide spa-

tio-temporal variations of terrestrial water storage in soils and surface water reservoirs. These obser-

vations from space can significantly improve our understanding of hydrological processes affecting 

large river basins in response to climate variability.

Satellite altimetry missions launched over the last 15 years include ERS-2 (1995- ), Jason-1 (2001- ) and 

ENVISAT (2002- ). The GRACE twin satellites launched in 2002 measure spatio-temporal variations of 

the gravity field with an unprecedented resolution (2°x2°) and precision (1 cm in terms of geoid 

height), over time scales ranging from 1 month to several years. The main application of GRACE is 

quantifying the land-based hydrological cycle, providing vertically integrated water mass change 

over large river basins with a precision of a few mm of water. Combination of observations from 

GRACE, satellite altimetry, and other space systems (e.g., active and passive radiometry, SAR and 

INSAR, etc.), used together with in situ measurements and hydrological modelling through assimila-

tion schemes, will greatly improve our understanding of the continental branch of the Arctic Hydro-

logical Cycle.
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3.3.	The Science and Monitoring Requirements  
of Arctic-HYDRA Demand an International 
Coordinated Effort Involving the National 
Operational Services, Agencies, Academia,  
Industry, Communities and International Bodies

Arctic-HYDRA represents an opportunity to advance the science of the Arctic Hydrological Cycle 

(AHC) and to establish a legacy of novel and comprehensive pan-Arctic observational networks that 

will contribute to global Earth observing systems.

The Arctic-HYDRA project is based on interdisciplinary integration within the field of operational 

and scientific hydrology. Furthermore, integration with biochemical, ecological and in general envi-

ronmental studies related to the AHC will be implemented. In addition, traditional integration with 

meteorology and climatology, as well as with cryospheric clusters will be considered. There is a long 

tradition of co-operation and joint monitoring of the classical hydrological variables with those of 

the atmosphere and the climate as well as with snow measurements, permafrost and glacial mass 

balance measurements and modelling in many of the Arctic National Hydro and Hydro-meteorolog-

ical Services (NHMS).

The original Arctic-HYDRA project idea (2006) was endorsed by the ICSU/WMO Joint Committee for 

the International Polar Year 2007-2009, which stated that the project idea ‘includes very strong scien-

tific, education and outreach components and demonstrates a high level of adherence to IPY themes 

and goals’, and that the activity would represent a ‘prominent and valued part of the IPY program’. 

The initial networking phase of Arctic-HYDRA (2006-2008) was funded by the Nordic Council of Min-

isters and received endorsement from the WMO Hydrology and Water Resources (HWR) Programme. 

The effort includes participation from all Arctic countries and Japan, involving all Arctic National 

Hydrological Services. Table 4.1 lists the primary partners of the Arctic-HYDRA effort and illustrates 

prominent international affiliations and linkages that have already been made.

To enable a wide list of hydrological and related applications, analyze water and energy cycle vari-

ability and change, develop meaningful seasonal predictions for mid- and high-latitudes, and gener-

ate less uncertain climate projections, a logical, efficient, all-encompassing multi-disciplinary system 

of observations, data (re-) analysis, modelling, and interpretation is required. In practice, however, 

such a system cannot be designed and built using a top-down approach, and, therefore an attempt 

will be made by Arctic-HYDRA to integrate useful contributions by already existing programs and to 

contribute to studies of water and energy cycle on a global scale. Due to the importance of the 

Arctic and its hydrological cycle, Arctic-HYDRA will be an important contributor to many programs 

and projects involved in global change research. 

Arctic HYDRA will contribute to the WCRP CEOP (Coordinated Energy and water cycle Observing Pro-

gramme), initially developed by the WCRP Global Energy and Water Cycle Experiment (GEWEX). CEOP has 

been accepted as the main water data processing engine of the future Global Earth Observations System 

of Systems (GEOSS). Arctic-HYDRA data will contribute both directly and also in processed way, through 

CEOP, to the goals of the Earth System Science Partnership (ESSP) Global Water System Project (GWSP).

Members of the Northern Research Basins (NRB) Working Group, the IHP northern network, are key 

proponents of Arctic-HYDRA. The Arctic Monitoring and Assessment Programme (AMAP), through 
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Arctic-HYDRA Lead Partners		

		

Name Organization Country
Árni Snorrason Icelandic Meteorological Office Iceland

Charles J. Vörösmarty City University of New York USA

Georgia Destouni Stockholm University Sweden

Markku Puupponen SYKE, Freshwater Centre Finland

Stein Beldring Norwegian Water Resources and Energy Directorate Norway

Alain Pietroniro National Water Research Institute Canada

Alexander Shiklomanov University of New Hampshire USA

Arne Tollan Norwegian Water Resources and Energy Directorate Norway

Arvid Bring Stockholm University Sweden

Barry Goodison Environment Canada Canada

Bent Hasholt University of Copenhagen Denmark 

Dan Rosbjerg Technical University of Denmark Denmark

Douglas Kane University of Alaska Fairbanks USA 

Eduard Sarukhanian WMO WMO

Fred Wrona Environment Canada Canada

Igor Shiklomanov State Hydrological Institute, St. Petersburg Russia

Jean-Guy Zakrevsky Environment Canada Canada

Jim Bogen Norwegian Water Resources and Energy Directorate Norway

John Pomeroy University of Saskatchewan Canada 

Jonathan Pundsack Arctic CHAMP, University of New Hampshire USA

Jukka Käykhö University of Turku Finland

Larry Hinzman University of Alaska, Fairbanks USA

Lars Otto Reiersen AMAP Norway

Odd Rogne AMAP Norway

Richard Lammers University of New Hampshire USA

Steven A. Frenzel USGS Alaska Science Center, Water Resources Office USA 

TBD ASIAQ Greenland 

Terry Prowse University of Victoria & Environment Canada ICARP-II 

Tetsuo Ohata JAMSTEC Japan

Thorsteinn Thorsteinsson Icelandic Meteorological Office Iceland

Ulrich Looser Global Runoff Data Center Germany

Valery Vuglinsky State Hydrological Institute Russia 

Verne Schneider USGS USA 

Vladimir Ryabinin WCRP/CliC WMO 

Volker Rachold IASC - International Arctic Science Committee Sweden

Wolfgang Grabs WMO HWR WMO 

Yuri Sychev Polar Foundation Russia
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its affiliation to the Arctic Council, is the only regional environmental programme enjoying intergov-

ernmental status. Recognition of the importance of the Arctic hydrology for global change stimu-

lates interest and involvement of the World Bank and its subsidiary bodies in supporting the moni-

toring of rivers delivering freshwater to the Arctic Ocean.

Arctic-HYDRA will facilitate the development of both research and sustained hydrological observa-

tions in the Arctic, to the benefit of climate change diagnosis and climate prediction. Thus, Arctic-

HYCOS, the main operational branch of Arctic-HYDRA observations, will not only be a regional 

constituent of the WHYCOS, but also a crucial component of the Global Climate Observing System 

(GCOS) and Global Terrestrial Observing System (GTOS), and a crucial contributor of the Coastal 

Module of the Global Ocean Observing System (GOOS). Implementation of Arctic-HYCOS is called for 

in the GCOS Implementation Plan. Worldwide coordination of this work is ensured through the 

Global Terrestrial Network for Hydrology (GTN-H), coordinated by the WMO Water Resources Pro-

gramme and the City College of New York.

Lack of adequate resources for sustained observing systems forces cognizant research programs and 

funders to initiate and support long-term monitoring through research observations. For example, 

Arctic-HYCOS was proposed by the WCRP Arctic Climate System Study (ACSYS) Project (1994-2003). 

Attempts to generate continuous support to most important observations are therefore made 

through coordination of efforts of main research and operational environmental programs, such as 

the Integrated Global Observing Strategy Partnership (IGOS-P). The WCRP/SCAR Climate and Cryo-

sphere Project (CliC), jointly with its co-sponsor SCAR, leads the development of the IGOS Theme on 

Cryosphere. This Theme and as well the IGOS Integrated Water Cycle Observations Theme will provide 

the foundations for coordination of Arctic-HYDRA observations with the rest of hydrological and 

cryospheric programs.

As a regional activity, Arctic-HYDRA will contribute to goals of the International Arctic Science Com-

mittee (IASC) and its several programs such as the International Study of Arctic Change (ISAC). The 

Northern Eurasia Earth Science Partnership Initiative (NEESPI), a consortium of research projects in-

terested in studying the manifestations of global change in the Northern Eurasia, is potentially a 

valuable partner for Arctic-HYDRA. 
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3.4.	Implementation of the Arctic-HYCOS  
Observing System

The main activities of Arctic-HYCOS will be:

•	 To establish and operate regional networks for measuring basic hydrological com-

ponents within the territory of the Arctic drainage basin. Existing observation 

networks should be fully utilized, and the decline of networks in some countries 

should be counteracted.

•	 To establish and operate a hydrological information system. The information sys-

tem shall generate and provide regularly reliable data on the hydrological cycle, 

and information needed for water resources management and research. Data 

management practices must respect the WMO Resolution 25 on hydrological data 

exchange. 

•	 To provide reliable assessments of freshwater inflow and energy flux into the 

Arctic Ocean in both the short and longer term. Longer-term objectives should 

include sediment transport and other selected water quality parameters.

The system will provide data collection, processing, storage and distribution in accordance with the 

appropriate procedures accepted by the countries of the region using WMO standards. It will pro-

vide hydrological information of high quality and processing and distribution will occur in near real-

time (with no longer than a 1-month delay). The system will be based on existing appropriate na-

tional observation systems available in the Arctic countries, without duplicating them. A major part 

of the Arctic-HYCOS will be the Basic Network of Hydrological Stations (BNHS).

The BNHS should involve, firstly, the stations with long-term observation series covering at least 50 

years on the large rivers discharging to the Arctic Ocean, on their tributaries as well as stations with 

long-term observation series on small rivers within the permafrost zone. The requirements of the 

participating countries and regional priorities would be the driving factors for the design of the 

network as well as for the selection of the variables for measurements and exchange. The stations 

to be included in the regional network would be identified jointly by the Hydrological Services of 

the participating countries, according to the established WHYCOS criteria.

 

The creation of a complete regional hydrological cycle observing system within the Arctic Region 

would take at least 8 to 10 years and therefore, the implementation of the Arctic-HYCOS project will 

have to be subdivided into several phases. The Arctic-HYCOS observation system should be managed 

by a Regional Centre, which would coordinate the regional co-operation activities. 

The Arctic-HYCOS will be designed to take account of the requirements of the latest information 

technologies, means of communications and data transmission, including Internet and GIS-technol-

ogies. Innovative technology would also be used to transfer information and exchange data within 

the region, to reinforce the national and regional agencies concerned, so that they can improve their 

capacity to generate products needed by end users at the national and regional levels. Newer tech-

nologies are continually being evaluated to allow safer and more cost-effective monitoring, while at 

the same time improving accuracy and reliability of the data. As the core observation network, 

Arctic-HYCOS provides an opportunity to expand the individual networks in a strategic manner such 

that each additional station describes a region or set of characteristics under-represented in the  
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current compendium of stations. To enhance these networks stations that are currently not in service 

due to funding constraints may be reactivated so that previous data from such sites can be used to 

analyze trends. As stations are added to networks, telemetry will be incorporated so that the data 

are available in near real time. 

From the point of view of integration, the Arctic-HYCOS observation system will form the main 

source of input for process studies as well as for modelling. As the monitoring network has good 

spatial coverage, and data are collected in almost real time, some new possibilities will be opened 

both in process work and modelling. Real time data and up-to-date data reports will highlight the 

importance of data-information system for wide groups of interest. Thus the observation system will 

have strong and diverse links with all other main components of the Arctic-HYDRA system.
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3.5.	 Arctic-HYDRA Workshops and Outreach Activities

Execution of a viable plan that functions across borders requires broad input, assessment, review and 

revision. Implementation of these synthesis activities will require substantial preplanning and coor-

dinated organization throughout the exercise. A series of workshops will be convened to assure the 

best approach is being applied to meet the stated goals. International workshops will be organized 

yearly to examine specific aspects of the scientific questions defined in Arctic-HYDRA. Advanced 

graduate students, who will benefit from the close interaction with experts from the essential disci-

plines, will participate in each workshop. The product of each workshop will be a high quality, 

multi-authored report detailing the outcome of the particular workshop theme.

Additionally, Arctic-HYDRA will create opportunities for creating a more comprehensive understand-

ing of spatial and temporal variations in hydrological processes. This understanding will culminate 

primarily through semi-annual workshops focused upon specific scientific questions. Biannual con-

ferences dedicated to examining the circumpolar inter-connections of the hydrological cycle will 

yield a greater understanding of the role of the Arctic water cycle in global climate dynamics. For 

example, inter-comparison of coordinated watershed studies on such processes as snowmelt or rain-

fall, which are then analyzed with complementary satellite remote sensing imagery, would enable 

an accurate assessment of mass and energy fluxes on pan-Arctic scales.

The project synthesis, integration, and outreach issues are complex and multi-faceted. Necessary col-

laboration and coordination among and between project participants and other related research 

activities towards a broad-scale understanding of different system connections through the freshwa-

ter cycle of the pan-Arctic will be supported by dedicated involvement and efforts of an interna-

tional Arctic-HYDRA secretariat. The secretariat will foster cooperation between partners in USA, 

Canada, the Nordic Countries, Russia, Greenland and form liaisons with partners in other countries 

involved in Arctic studies. The secretariat will be structured to foster not only research, but also 

graduate education, post-graduate training and outreach to policy-makers and the public. Data dis-

semination and informative websites and newsletters will help to broaden interest in Arctic environ-

mental change in general, and provide updates on specific research programs.
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•	 To characterize variability in the Arctic Hydrological Cycle (AHC).

•	 To examine linkages between atmospheric forcing and continental 
discharge to the ocean.

•	 To assess the historical response of the Arctic Ocean to variations in 
freshwater input from rivers and net precipitation over the ocean.

•	 To attribute to specific elements of the AHC or to external forcing 
the sources of observed spatial-temporal variability in the land-
ocean-ice-atmosphere systems.

•	 To detect emerging changes in the contemporary state of the AHC  
in near real time and to interpret such changes in a broader context.

Scientific goals of Arctic-HYDRA:

The Chukochiye River meanders through the tundra of the Kolyma delta region, Siberia, Russia


